
Internet Apps With ISAPI
by Steve Troxell

In past issues, you’ve read about
how to use the Common Gateway

Interface (CGI) to build Delphi web
server applications which respond
to user input via a web browser and
return dynamically generated
HTML pages in response. Now I’d
like to show you a different ap-
proach for accomplishing similar
tasks.

Nearly all web server systems
provide a native server API which
allows you to write applications to
handle certain types of HTTP re-
quests. Netscape provides NSAPI,
Microsoft provides ISAPI and other
vendors have their own APIs. Each
API is proprietary to the web serv-
er software it was developed for, so
details of their usage will vary. In
this issue, we’re going to focus on
ISAPI, the native server API pro-
vided with Microsoft’s Internet In-
formation Server (IIS) and Personal
Web Server (PWS) products. This
article assumes familiarity with the
basic issues of developing CGI ap-
plications. For more information
on CGI, see Developing Dynamic
Web Pages in Issue 16, and Bob
Swart’s Under Construction column
in this issue, which describes his
CGI Debugger.

Server Extensions
ISAPI applications are just DLLs
with specific entry points which
the web server calls in response to
a request from a web browser. The
DLL is loaded into the same proc-
ess space as the WWW publishing
service itself. Because of this, these
DLLs are sometimes referred to as
server extensions.

ISAPI apps are called from an
HTML page in a browser in the
same manner as CGI programs.
That is, the relative URL and file-
name of the program to execute is
identified in the HTML, usually via
the ACTION parameter of a FORM tag.
The only difference is that you’ll
reference a DLL rather than an EXE.
Beyond that there is no change in
how you set up the client-side

HTML page. ISAPI DLLs are not
specifically ‘installed’: the web
server simply loads whatever DLL
is identified in the HTML. Like CGI
programs, the DLLs must be in a
directory on the web server to
which your Internet users have
read and execute permissions.

Since an ISAPI app is loaded into
server memory when it is first re-
quested, subsequent requests by
other web users are handled much
faster because there is no addi-
tional loading overhead involved.
This is the primary advantage of
using a native server API over CGI.
However, you have to take the
good with the bad. Since these
DLLs are loaded into the same
process space as the web server
software, a buggy ISAPI app could
bring down the whole server. Also,
you’ll more than likely have to shut
down your WWW publishing serv-
ice to get it to unload your DLL
before you can copy an updated
version over it. Further, since the
DLL can be called by any number
of clients simultaneously, you must
program it with ‘thread-safe’ prac-
tices in mind, such as avoiding
global variables.

You can see that developing an
ISAPI app is a bit more complicated
than CGI. You must be extremely
careful when developing and de-
bugging any DLL-based web appli-
cation. You’ll save yourself and
your site manager a lot of grief if
you use a local web server to
develop and debug your ISAPI app
before installing it on a public
server.

The web server communicates
with your DLL by passing specific
data structures through specific
entry points. Fortunately, Delphi 2
ships with a unit called ISAPI.PAS
which defines most of the struc-
tures, datatypes and constants you
need (see Listing 1). An ISAPI DLL
must export the two functions
shown at the bottom of Listing 1.
When the server first loads the
DLL, it queries it through the

GetExtensionVersion function, whi-
ch simply returns a version num-
ber and DLL description (see
Listing 2). Whenever the server
receives a client request to execute
the ISAPI app, the server calls the
HttpExtensionProc function. This is
where to place all the code which
constitutes your application.

The Extension Control Block
All communication between the
browser client and your program
takes place via an Extension Con-
trol Block (ECB). If you recall, web
servers recognize HTTP requests
to execute CGI applications and
place the user input and session
information for that request in en-
vironment variables which the CGI
program then reads as input. In the
same vein, the web server recog-
nizes a request to execute an ISAPI
DLL, allocates and fills an Exten-
sion Control Block, loads the DLL
and runs the application by calling
the HttpExtensionProc function and
passing a pointer to the ECB.

Listing 1 shows the ECB in detail;
let’s take a closer look.

The ConnID field is a connection
handle which the server uses to
keep track of multiple web clients.
As our DLL interacts with the serv-
er to process the request (for ex-
ample, to send the output back to
the client), we’ll be passing the
ConnID into various server callback
functions so the server knows
which of its clients to interact with.
You should never change the value
of ConnID in your DLL or the server
will lose track of the requests.

The lpszMethod field points to a
string of either GET or POST depend-
ing on how the application was
called in the HTML page. As you
may recall from Issue 16, this
mimicks the behavior of the CGI
variable REQUEST_METHOD. Likewise,
the lpszQueryString field parallels
the CGI variable QUERY_STRING and
contains the URL-encoded user
data from the client if the request
method is GET. If the request

28 The Delphi Magazine Issue 19

method is POST, the user data is
found in the buffer pointed to by
lpbData. Note that lpbData does not
point to a null-terminated string,
but rather a series of bytes. The
number of bytes found in this
buffer is given in the cbAvailable
field.

Server Callback Functions
As you can see, the ECB provides
essentially the same information
that we had to work with in CGI –
we just get it from a different place.
In addition, the ECB defines func-
tion pointers to four callback func-
tions implemented within the web
server software: GetServerVari-
able, WriteClient, ReadClient, and
ServerSupportFunction. The proto-
types for each of these functions
are shown in Listing 1. These
functions allow us to interact di-
rectly with the web server to get
more information and perform the
actions that will ultimately affect
what the user sees in their
browser.

You may have noticed that not
all of the session information we
have available to us with CGI is
represented by fields in the ECB. Is
ISAPI shortchanging us? Not at all.
All the standard CGI variables can
be accessed via the GetServerVari-
able callback function. By passing
in the name of the variable we are

interested in and, as with all the
server callbacks, the ConnID from
the ECB, we get back a pointer to a
buffer containing the value of that
variable.

We need the ReadClient function
for extremely large volumes of in-
put data. The lpbData buffer only
contains a maximum of 48Kb of
user data. In the rare event that
more than this amount is inbound
from the client browser, lpbData
contains the first 48Kb worth and
the rest is retrieved through the
ReadClient function. We can deter-
mine when it is necessary to use
ReadClient because cbTotalBytes
will be greater than cbAvailable
(which will equal 48Kb).

To use ReadClient we just create
a buffer to receive the data and
pass a pointer to the buffer and its
size into ReadClient. ReadClient
writes the additional client data
into our buffer and changes the
Size parameter to indicate how

much data it wrote. We simply keep
calling ReadClient until it tells us
there is no more data to read (see
Listing 2).

Returning A Response Page
Most ISAPI apps will need to create
an HTML page to send back to the
browser. With CGI, we simply
wrote strings to the standard
output device (standard CGI) or
to a designated temporary file
(WinCGI). With ISAPI, we simply
create a buffer containing the
HTML-formatted text we want to
send back and call the WriteClient
function. We pass into it a pointer
to our buffer of output text, the size
of the buffer, and a flag value of
1, indicating synchronous I/O.
Synchronous I/O basically means
that the callback function won’t
return until the server has sent all
of the output data back to the client
browser (we won’t be covering
asynchronous I/O in this issue).

{ Abbreviated listing of ISAPI.PAS provided with Delphi }
unit isapi;
interface
uses Windows;
const
 HSE_VERSION_MAJOR = 1; // major version of this spec
 HSE_VERSION_MINOR = 0; // minor version of this spec
 HSE_LOG_BUFFER_LEN = 80;
 HSE_MAX_EXT_DLL_NAME_LEN = 256;
type
 HCONN = THandle;
// the following are the status codes returned by the Extension DLL
const
 HSE_STATUS_SUCCESS = 1;
 HSE_STATUS_SUCCESS_AND_KEEP_CONN = 2;
 HSE_STATUS_PENDING = 3;
 HSE_STATUS_ERROR = 4;
// passed to GetExtensionVersion
type
 PHSE_VERSION_INFO = ^THSE_VERSION_INFO;
 THSE_VERSION_INFO = packed record
 dwExtensionVersion: DWORD;
 lpszExtensionDesc:
 array [0..HSE_MAX_EXT_DLL_NAME_LEN-1] of Char;
 end;
type
 TGetServerVariableProc = function (hConn: HCONN;
 VariableName: PChar; Buffer: Pointer; var Size: DWORD):
 BOOL stdcall;
 TWriteClientProc = function (ConnID: HCONN; Buffer:
 Pointer; var Bytes: DWORD; dwReserved: DWORD):
 BOOL stdcall;
 TReadClientProc = function (ConnID: HCONN; Buffer:
 Pointer; var Size: DWORD): BOOL stdcall;

 TServerSupportFunctionProc = function (hConn: HCONN;
 HSERRequest: DWORD; Buffer: Pointer; var Size: DWORD;
 var DataType: DWORD): BOOL stdcall;
// passed to extension procedure on a new request
type
 PEXTENSION_CONTROL_BLOCK = ^TEXTENSION_CONTROL_BLOCK;
 TEXTENSION_CONTROL_BLOCK = packed record
 cbSize: DWORD; // size of this struct.
 dwVersion: DWORD; // version info of this spec
 ConnID: HCONN; // Context number not to be modified!
 dwHttpStatusCode: DWORD; // HTTP Status code
 //null terminated log info specific to this Extension DLL
 lpszLogData: array [0..HSE_LOG_BUFFER_LEN-1] of Char;
 lpszMethod: PChar; // REQUEST_METHOD
 lpszQueryString: PChar; // QUERY_STRING
 lpszPathInfo: PChar; // PATH_INFO
 lpszPathTranslated: PChar; // PATH_TRANSLATED
 cbTotalBytes: DWORD; //Total bytes indicated from client
 cbAvailable: DWORD; // Available number of bytes
 lpbData: Pointer; // pointer to cbAvailable bytes
 lpszContentType: PChar; // Content type of client data
 GetServerVariable: TGetServerVariableProc;
 WriteClient: TWriteClientProc;
 ReadClient: TReadClientProc;
 ServerSupportFunction: TServerSupportFunctionProc;
 end;
// these are the prototypes that must be exported
// from the extension DLL
// function GetExtensionVersion(var Ver:
// THSE_VERSION_INFO): BOOL; stdcall;
// function HttpExtensionProc(var ECB:
/ TEXTENSION_CONTROL_BLOCK): DWORD; stdcall;
implementation
end.

var
 Buffer: array[0..1023] of Char;
 Result: BOOL;
 BufSize: Integer;
with ECB do begin
 if cbTotalBytes > cbAvailable then begin
 repeat
 BufSize := SizeOf(Buffer);
 Result := ReadClient(ConnID, @Buffer, BufSize);
 { process data }
 until not Result or (BufSize = 0);
 end;
end;

➤ Listing 2

➤ Listing 1

March 1997 The Delphi Magazine 29

Putting It All Together
Let’s demonstrate all we’ve
learned through an example. List-
ing 3 shows the HTML for the test
query page shown in Figure 1. This
page calls our application by two
means: by hyperlink and by data
entry form. You should recognize
the data entry form approach from
the discussions of CGI in past is-
sues. The only difference here is
that our ACTION parameter refers to
a DLL rather than an EXE.

The hyperlinks on this page
show an alternative way of calling
an ISAPI app directly without using
an HTML data entry form. Rather
than link to an HTML page, you link

<HTML>
<HEAD><TITLE>ISAPI Demo</TITLE></HEAD>
<BODY>
Run the ISAPI program

Run the ISAPI
program with parameters

<FORM ACTION="http://stevet-wnt/scripts/test1.dll" METHOD="POST">
Comment: <INPUT TYPE="TEXT" NAME="COMMENT">

<INPUT TYPE="SUBMIT" VALUE="Run the ISAPI program">
</FORM>
</BODY>
</HTML>

➤ Listing 3

to the program to execute (you
can do this with CGI as well). In
addition, you can pass data into the
program simply by including it af-
ter the program name separated by
a question mark. Any data after the
question mark must be URL en-

coded. For example, spaces must
be coded as plus signs. This type of
request is translated as a GET and
all the data after the question mark
appears in the lpszQueryString
field of the ECB (the QUERY STRING
variable in CGI).

library Test1;
uses SysUtils, Classes, Windows, Isapi;
const
 HSE_IO_SYNC = 1;
 HSE_IO_ASYNC = 2;
function GetExtensionVersion(Ver: THSE_VERSION_INFO):
 BOOL; stdcall;
begin
 Ver.dwExtensionVersion :=
 MakeLong(HSE_VERSION_MINOR, HSE_VERSION_MAJOR);
 StrLCopy(Ver.lpszExtensionDesc,
 ’Internet Server Application, Example #1’,
 HSE_MAX_EXT_DLL_NAME_LEN);
 Result := True;
end;
function HttpExtensionProc(
 var ECB: TEXTENSION_CONTROL_BLOCK): DWORD; stdcall;
 procedure UnpackURLString(S: PChar; List: TStringList);
 { Parses and decodes a URL-encoded string. Copies variable
 values into List. See details in Issue #16. }
 var LabelStr, ValueStr: ShortString;
 begin
 LabelStr := ’’;
 ValueStr := ’’;
 while S^ <> #0 do begin
 case S^ of
 ’+’ : ValueStr := ValueStr + ’ ’;
 ’%’ : begin
 ValueStr := ValueStr + Chr(StrToInt(’$’ +
 (S + 1)^ + (S + 2)^));
 Inc(S, 2);
 end;
 ’=’ : if LabelStr = ’’ then begin
 LabelStr := ValueStr;
 ValueStr := ’’;
 end;
 ’&’ : begin
 List.Values[LabelStr] := ValueStr;
 ValueStr := ’’;
 LabelStr := ’’;
 end;
 else ValueStr := ValueStr + S^;
 end;
 Inc(S);
 end;
 if ValueStr <> ’’ then
 List.Values[LabelStr] := ValueStr;
 end;
 function ISAWriteLn(Msg: string): Boolean;
 { Encapsulate the WriteClient callback into something
 more manageable. }
 var NBytes: DWORD;
 Buffer: PChar;
 begin
 Buffer := StrAlloc(Length(Msg) + 3);
 try
 StrPCopy(Buffer, Msg);
 StrCat(Buffer, #13#10);
 nBytes := StrLen(Buffer);
 Result := ECB.WriteClient(ECB.ConnID,
 Buffer, NBytes, HSE_IO_SYNC);
 finally
 StrDispose(Buffer);
 end;
 end;

var FormFields: TStringList;
 I: Integer;
 PostData: PChar;
begin
 FormFields := TStringList.Create;
 try
 with ECB do begin
 if StrPas(lpszMethod) = ’GET’ then
 UnpackURLString(lpszQueryString, FormFields)
 else begin
 if Assigned(ECB.lpbData) then begin
 PostData := StrAlloc(cbAvailable + 1);
 StrMove(PostData, ECB.lpbData, cbAvailable);
 UnpackURLString(PostData, FormFields);
 end;
 end;
 ISAWriteLn(’<HTML><HEAD>’);
 ISAWriteLn(’<TITLE>ISAPI Response Page</TITLE>’);
 ISAWriteLn(’</HEAD><BODY>’);
 ISAWriteLn(’<PRE>Environment Control Block’);
 ISAWriteLn(’
’);
 ISAWriteLn(’cbSize = ’ + IntToStr(cbSize));
 ISAWriteLn(’dwVersion = ’ +
 IntToStr(dwVersion shr 16) + ’.’ +
 IntToStr(dwVersion and $FFFF));
 ISAWriteLn(’ConnID = ’ + IntToStr(ConnID));
 ISAWriteLn(’dwHttpStatusCode = ’ +
 IntToStr(dwHttpStatusCode));
 ISAWriteLn(’lpszLogData = ’ + lpszLogData);
 ISAWriteLn(’lpszMethod = ’ +
 StrPas(lpszMethod));
 ISAWriteLn(’lpszQueryString = ’ +
 StrPas(lpszQueryString));
 ISAWriteLn(’lpszPathInfo = ’ +
 StrPas(lpszPathInfo));
 ISAWriteLn(’lpszPathTranslated = ’ +
 StrPas(lpszPathTranslated));
 ISAWriteLn(’cbTotalBytes = ’ +
 IntToStr(cbTotalBytes));
 ISAWriteLn(’cbAvailable = ’ +
 IntToStr(cbAvailable));
 if not Assigned(lpbData) then
 ISAWriteLn(’lpbData = nil’)
 else
 ISAWriteLn(’lpbData = ’ +
 StrPas(PostData));
 ISAWriteLn(’lpszContentType = ’ +
 StrPas(lpszContentType));
 ISAWriteLn(’’);
 ISAWriteLn(’Form Fields:’);
 for I := 0 to FormFields.Count - 1 do
 ISAWriteLn(IntToStr(I) + ’ ’ + FormFields[I]);
 ISAWriteln(’</PRE>’);
 ISAWriteLn(’</BODY></HTML>’);
 end;
 finally
 FormFields.Free;
 StrDispose(PostData);
 Result := HSE_STATUS_SUCCESS;
 end;
end;
exports
 GetExtensionVersion,
 HttpExtensionProc;
begin
end.

➤ Listing 4

30 The Delphi Magazine Issue 19

All our application is going to do is reflect back to us
the contents of the ECB, as shown in Figure 2. The ISAPI
DLL which accomplishes this is shown in Listing 4.
We’ve borrowed the URL decoding algorithm from our
CGI work in Issue 16.

Conclusion
Although they require a bit more care to develop, ISAPI
applications outperform CGI for high-volume data
processing on a web server. With the material pre-
sented here, you should easily be able to convert any
CGI application into an ISAPI DLL. You can get more
detailed information on ISAPI at Microsoft’s web site:

http://www.microsoft.com/win32dev/apiext/isapimrg.html

You may also care to visit the ISAPI developers site at:
http://www.genusa.com/isapi/

(thanks to John Steventon for the info on this site).

Steve Troxell is a Senior Software Engineer with
TurboPower Software. He can be reached by email at
stevet@tpower.com or on CompuServe at 74071,2207

➤ Right: Figure 2➤ Above: Figure 1

March 1997 The Delphi Magazine 31

	Server Extensions
	The Extension Control Block
	Server Callback Functions
	Returning A Response Page
	Putting It All Together
	Conclusion

